Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Min Xia

Department of Applied Chemistry, Zhejiang Science and Technology University, Hangzhou 310018, People's Republic of China

Correspondence e-mail: xiamin@hzcnc.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.063 wR factor = 0.186 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6,7-Dimethoxy-*N*-[3-(trifluoromethyl)phenyl]quinazolin-4-amine ethanol disolvate

The title compound, $C_{17}H_{14}F_3N_3O_2 \cdot 2C_2H_5OH$, was synthesized by the reaction of 4-chloro-6,7-dimethoxyquinazoline and 3-(trifluromethyl)aniline at 580 W in a domestic microwave oven and obtained in 93% yield. The bond lengths and angles are normal. Intermolecular N-H···O, O-H···N and O-H···O hydrogen bonds and π - π stacking interactions between the quinazoline rings of neighbouring molecules stabilize the crystal packing. Received 30 August 2005 Accepted 16 September 2005 Online 21 September 2005

Comment

Recently, epidermal growth factor receptor (EGFR) has became one of the significant target proteins in medicinal developments (Arteaga, 2002), since its excess always leads to a variety of vicious tumours and cancers. Among the small molecular inhibitors of EGFR, 4-anilinoquinazoline derivatives are clinically confirmed to be among the most effective compounds (Hou *et al.*, 2002). The results of quantitative structure–activity relationship research indicate that electrondonating groups at the 6,7-positions will improve their degree of EGFR inhibition (Bridges *et al.*, 1996). We report here the synthesis and crystal structure of the title compound, (I).

In compound (I) (Fig. 1), the bond lengths and angles are normal (Table 1); two ethanol solvent molecules complete the asymmetric unit. The quinazoline system and non-fused benzene ring make a dihedral angle of 43.2 (1)°. Interestingly, atoms N1, C6, C8 and H3 are almost coplanar, with an r.m.s. deviation of 0.026 (8) Å, in spite of steric hindrance between the quinazoline system and the non-fused benzene ring.

The solvent molecules play an important role in the crystal formation, participating in a number of hydrogen bonds with the quinazolin-4-amine molecules (Table 2). These hydrogen bonds stabilize the crystal packing (Fig. 2), along with π - π

03380 Min Xia • C₁₇H₁₄F₃N₃O₂·2C₂H₆O

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

View of (I), showing the atom-labelling scheme and displacement ellipsoids at the 40% probability level. The two ethanol solvent molecules and the minor component of the disordered CF3 group have been omitted for clarity. H atoms are represented by circles of arbitrary size.

stacking interactions between the quinazoline rings of neighbouring molecules; the interplanar distance to the symmetryrelated molecule at (1 - x, 2 - y, 2 - z) is 3.356 (8) Å.

Experimental

At room temperature, basic alumina (2 g) was added to a solution of 4-chloro-6,7-dimethoxyquinazoline (1 mmol) and 3-(trifluromethyl)aniline (1 mmol) in diethyl ether (10 ml). After removal of the ether, the solid was poured into an open vessel and irradiated for 3 min at 580 W in a domestic microwave oven. After cooling to room temperature, ethanol (15 ml) was added and the filtrate was concentrated on a rotary evaporator. The residue was isolated by silica column chromatography with CH₂Cl₂-Et₂O (5:3 v/v) as the eluent in 93% yield. Suitable crystals were obtained by evaporation of an ethanol-water (1:1 v/v) mixed solution (m.p. 442-443 K). ¹H NMR (CDCl₃): δ 4.01(*s*, 3H), 4.03(*s*, 3H), 7.08 (*s*, 1H), 7.27 (*d*, 1H, J = 7.5 Hz), 7.38–7.50 (m, 2H), 7.51 (t, 1H, J = 8.0 Hz), 8.70 (s, 1H). IR (KBr, ν cm⁻¹): 3448, 2925, 2851, 1625, 1584, 1516, 1449, 1332, 1242, 1166, 1123, 1069, 993, 793, 700. Analysis calculated for C₂₁H₂₆F₃N₃O₄: C 57.14, H 5.94, N 9.52%; found C 57.39, H 5.78, N 9.67%.

Crystal data

$C_{17}H_{14}F_{3}N_{3}O_{2}\cdot 2C_{2}H_{6}O$	Z = 2
$M_r = 441.45$	$D_x = 1.296 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.7035 (7) Å	Cell parameters from 4851
b = 9.7426 (8) Å	reflections
c = 14.5212 (9) Å	$\theta = 2.3-27.4^{\circ}$
$\alpha = 70.652 \ (4)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 89.493 \ (1)^{\circ}$	T = 293 (2) K
$\gamma = 77.484 \ (3)^{\circ}$	Prism, colourless
$V = 1131.52 (15) Å^3$	$0.48 \times 0.35 \times 0.30$ mm

The molecular packing, showing the hydrogen-bonding interactions (dashed lines). C-bound H atoms have been omitted for clarity.

Data collection - - - ----

Rigaku R-AXIS RAPID	3972 independent reflections
diffractometer	3264 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.058$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.2^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.956, \ T_{\max} = 0.969$	$k = -11 \rightarrow 11$
8371 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.063$
$wR(F^2) = 0.186$
S = 1.08
3972 reflections
318 parameters
H atoms treated by a mixture of
independent and constrained
refinement

reflections with $I > 2\sigma(I)$ = 0.058= 25.2° $-10 \rightarrow 10$ $-11 \rightarrow 11$ $17 \rightarrow 17$

 $w = 1/[\sigma^2(F_0^2) + (0.0909P)^2]$ + 0.4785P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.028 (5)

Table 1

- 11

Selected geometric parameters (Å, °).

F1-C1	1.282 (6)	N1-H3	0.86 (3)
F2-C1	1.320 (7)	N2-C8	1.328 (3)
F3-C1	1.307 (6)	N2-C9	1.341 (3)
N1-C8	1.362 (3)	N3-C9	1.319 (3)
N1-C6	1.409 (3)	N3-C10	1.371 (3)
C13-O3-C17	116.34 (17)	C9-N3-C10	115.86 (19)
C14-O4-C16	117.31 (19)	F1-C1-C2	114.1 (3)
C8-N1-C6	126.92 (18)	F3-C1-C2	113.4 (4)
C8-N1-H3	119.6 (16)	F2-C1-C2	111.1 (4)
C6-N1-H3	112.5 (16)		

Table 2			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 - H3 \cdots O1 \\ O2 - H2 \cdots N3^{i} \\ O1 - H1 \cdots O2^{ii} \end{array}$	0.86 (3)	2.12 (3)	2.965 (3)	169 (2)
	0.82	1.93	2.745 (3)	173
	0.82	1.90	2.690 (3)	162

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y + 1, z.

All H atoms were initially located in a difference Fourier map. All methyl H atoms were then constrained to an ideal geometry, with C-H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about the C-C bond. The aromatic and hydroxyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93 Å, O-H = 0.82 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. The amine H atom was refined isotropically. The CF₃ group is disordered and the major and minor orientations have refined occupancies of 0.70 (1) and 0.30 (1), respectively. The atomic displacement parameters of one ethanol solvent molecule (O2/C20/C21) are significantly higher than those of the other solvent molecule, indicating a possible partial disorder of the former residue.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are grateful for financial support from the Analysis and Determination Fund of Zhejiang Province (04103)

References

- Arteaga, C. L. (2002). Oncologist, 7 (Suppl. 4), 31-39.
- Bridges, A. J., Zhou, H., Cody, D. R., Rewcastle, G. W., McMichael, A., Showalter, H. D. H., Fry, D. W., Kraker, A. J. & Denny, W. A. (1996). J. Med. Chem. 39, 267-276.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hou, T. J., Zhu, L. L., Chen, L. R. & Xu, X. J. (2002). Acta Chim. Sinica, 60,
- 1023-1028. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.